FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity.

نویسندگان

  • Qiwei Wu
  • Angelica M Ortegon
  • Bernice Tsang
  • Holger Doege
  • Kenneth R Feingold
  • Andreas Stahl
چکیده

Fatty acid transport protein 1 (FATP1), a member of the FATP/Slc27 protein family, enhances the cellular uptake of long-chain fatty acids (LCFAs) and is expressed in several insulin-sensitive tissues. In adipocytes and skeletal muscle, FATP1 translocates from an intracellular compartment to the plasma membrane in response to insulin. Here we show that insulin-stimulated fatty acid uptake is completely abolished in FATP1-null adipocytes and greatly reduced in skeletal muscle of FATP1-knockout animals while basal LCFA uptake by both tissues was unaffected. Moreover, loss of FATP1 function altered regulation of postprandial serum LCFA, causing a redistribution of lipids from adipocyte tissue and muscle to the liver, and led to a complete protection from diet-induced obesity and insulin desensitization. This is the first in vivo evidence that insulin can regulate the uptake of LCFA by tissues via FATP1 activation and that FATPs determine the tissue distribution of dietary lipids. The strong protection against diet-induced obesity and insulin desensitization observed in FATP1-null animals suggests FATP1 as a novel antidiabetic target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle.

Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the r...

متن کامل

Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation

OBJECTIVE A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages (MΦs). Broadly speaking, MΦs dependent on glucose are pro-inflammatory, classically activated MΦs (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, MΦs that primarily metabolize fatty acids are alternatively activated MΦs (AAM) a...

متن کامل

The effect of aerobic exercise on epicardial adipose tissue, insulin resistance, and some liver enzymes in high-fat diet-induced obesity male wistar rat

Background and Aim: Due to the prevalence and socio-economic consequences of obesity in mortality, cardiovascular (CAD) and nonalcoholic fatty liver disease the effectiveness of aerobic exercise on epicardial adipose tissue (EAT), insulin resistance (IR) and some liver enzymes of high-fat diet-induced obesity male wistar rats was investigated. Methods: Thirty-two male Wistar rats with an averag...

متن کامل

The Regulation of Fatty Acid Transport and Transporters in Insulin-, and Contraction- Stimulated Skeletal Muscle

THE REGULATION OF FATTY ACID TRANSPORT AND TRANSPORTERS IN INSULIN-, AND CONTRACTION-STIMULATED SKELETAL MUSCLE Swati S. Jain Advisor: University of Guelph, 2011 Professor A. Bonen The clearance of circulating glucose and long-chain fatty acids (FA) into skeletal muscle involves the translocation of glucose transporter GLUT4, fatty acid translocase (FAT/CD36), plasma membrane associated fatty a...

متن کامل

Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance

INTRODUCTION Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. METHODS AND RESULTS Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 26 9  شماره 

صفحات  -

تاریخ انتشار 2006